
CHAPTER 12

Approximating the Euclidean Traveling Salesman
Problem (TSP)

‘Would you know how to calculate the diameter of the globe?’
‘No, I’m afraid I wouldn’t,’ answered Svejk, ‘but I’d like to ask you a riddle myself,

gentlemen. Take a three-storied house, with eight windows on each floor. On the roof
there are two dormer windows and two chimneys. On every floor there are two tenants.
And now, tell me, gentlemen, in which year the house-porter’s grandmother died?’

– The good soldier Svejk, Jaroslav Hasek.

In this chapter, we introduce a general technique for approximating the shortest travel-
ing salesperson tour in the plane (i.e., TSP). This technique found wide usage in developing
approximation algorithms for various problems. We will present two different variants of
the technique, the first is quadtree based, and is faster and easier to generalize to higher
dimension. The other variant will be presented in the next chapter, and is slower but seems
to be somewhat stronger.

12.1. The TSP problem – Introduction

Let P be a set of n points in the plane. We would like to compute the shortest tour
visiting all the points of P. That is, it is the shortest closed polygonal chain where its
vertices are all the points of P. We will refer to such a chain as a tour. The problem of
computing the shortest TSP tour is NP-Hard, even in the plane with Euclidean distances.
In the general graph setting (where the points are vertices of a complete graph, and every
edge has an associated weight with it) no approximation is possible. For the metric case,
where the weights comply with the triangle inequality, a 3/2 approximation is known.
However, in the low dimensional Euclidean case, where the distances between points are
just the Euclidean distance, a PTAS is known.

The problem had attracted a vast amount of research in computer science, due to it
simplicity and the ability to easily draw and inspect a solution. In fact, for small instances
people can do a decent job in solving such problems manually.

A nice historical example of TSP is Lincoln’s tour of Illinois in 1850. Lincoln worked
as a lawyer traveling with a circuit court. At the time, a circuit court would travel through
several cities, where in each city they would stop and handle local cases, spending a few
days in each city. The tour that the circuit court (and Lincoln) took in 1850 is depicted in
Figure 1 (a) (they started from Springfield and returned to it in the end of the tour). Clearly,
it is very close to being the shortest TSP of these points. In this case, there is a shorter
solution, but it is not clear that it was shorter as far as traveling time in 1850, see Figure 1
(b).

More modern applications of TSP vary from control systems for telescopes (i.e., the
telescope uses the minimum amount of motion while taking picture of all required spots in
the sky during one night), to scheduling of rock or political tours, and many other applica-
tions.

169

170 12. APPROXIMATING THE EUCLIDEAN TRAVELING SALESMAN PROBLEM (TSP)

Paris

DanvilleUrbana

Monticello

Clinton

Bloomington

Metamora

P
ek
in

S
p

rin
gfi

eld

Taylorville

Sullivan

Shelbyville

Mt.

Pu
las

ki

D
eca

tor

Paris

DanvilleUrbana

Monticello

Clinton

Bloomington

Metamora

P
ek
in

S
p

rin
gfi

eld

Taylorville

Sullivan

Shelbyville

Mt.

Pu
las

ki

D
eca

tor

(a) (b)

Figure 1. (a) Lincoln tour in 1850 in Illinois, and (b) the optimal TSP.

12.2. When the optimal solution is friendly

Here we are interested in the Euclidean variant. We are given a set P of n points in the
plane, with Euclidean distance, and we are looking for the shortest TSP tour.

First try – divide and conquer. A natural approach to this problem, would be to
try and divide the plane into two parts, say by a line, solve (a variant of) the problem
recursively on each side of the line, and then stitch the solutions together. So let ` be such
a separating vertical line, having at least one point of P on each size of it, and we divide
the problem into two subproblems along the line `.

To this end, we need to guess where the optimal TSP crosses the separating line. Let
us assume, for the time being, that the TSP crosses this separating line at most m times,
where m is some small constant. To solve the left (resp. right) subproblem, we need to
specify how the TSP crosses the “iron curtain” formed by `.

`

The optimal TSP path is made of segments con-
necting two points of P. As such, there are N =

(
n
2

)
potential segments that the TSP might use. Choosing
the m intersection points of the tour with `, is equiva-
lent to choosing the (at most) m segments of the TSP
tour crossing the splitting line `. As such, the number
of possibilities is

m∑
i=0

(
N
i

)
≤ 2

(Ne
m

)m

= NO(m) = nO(m),

by Lemma 12.15p183.
Note, however, that it is not sufficient to solve the problem on the left and on the

right by just knowing the segments crossing the middle line. Indeed, whether or not a
solution on the left subproblem is valid depends on the solution on the right subproblem,
see Figure 2. As such, for every subproblem, we do not only have to specify the points
where the tour enters the subproblem (we will refer to these points as checkpoints), but
also the connectivity constraints for the checkpoints of each subproblem.

12.2. WHEN THE OPTIMAL SOLUTION IS FRIENDLY 171

` ` `
(A) (B) (C)

Figure 2. (A) The guessed middle solution fed into the two subprob-
lems. (B) A solution to the left subproblem resulting in a disconnected
tour. (C) A valid solution.

1

2

3

4

R

Before going into the exact details of how to do this, imag-
ine continuing recursively in this fashion. Namely, we try to
break the problem recursively into smaller and smaller regions.
To this end, we will cut each subproblem by (say) a vertical
line, alternating between horizontal and vertical line‘s. A rec-
tangle R generated by a sequence of such cuts is depicted on the
right. A subproblem is thus a rectangle R having checkpoints
on its boundary, with ordering constraints (i.e., in which order
does the tour visit these checkpoints), where we need to find a solution of total minimal
length connecting the right checkpoints to each other and spanning all the points inside R.

Our intention is to solve this problem using dynamic programming. To this end, we
would like to minimize the number of subproblems one needs to consider. Note that the
cutting lines we use can be ones that pass through the given points. As such, there are
2n possible cutting lines, since only horizontal or vertical lines are considered. Every
subrectangle is defined by the 4 cutting lines that form its boundary, and as such there
(2n)4 = O(n4) possible rectangles that might appear in a subproblem.

1

2

3

4

5

6 7 8

9

10

11 12

R

So, consider such a subproblem with a rectan-
gle R with t checkpoints on its boundary. Speci-
fying the order in which the checkpoints are being
visited by the tour, can be done by numbering these
endpoints. Namely, for a specific rectangle with t
checkpoints on its boundary, there are t! possible
subproblems that one needs to compute a solution
for. An example of such a numbering and one pos-
sible solution compatible with this numbering is de-
picted on the right. Here, the point numbered 1 is
the first visited by the tour when it enters R, then
the tour leaves the rectangle through the endpoint 2, reenters it using 3, and so on. In the
figure, the squares are the points of P inside this rectangle.

One can perform some additional checks on a given instance of a subproblems to
verify that it is indeed realizable and should be considered. For example, the total number
of times the tour enter/leave a subrectangle is the same.

In fact, the number of possible subproblems one has to consider, for such a rectangle
R, is somewhat smaller than t!, as the following exercise testifies. However, since it is still
exponential it will be easier for us to use the naive bound t!.

172 12. APPROXIMATING THE EUCLIDEAN TRAVELING SALESMAN PROBLEM (TSP)

Problem 12.1. Given a rectangle R and t checkpoints specified on its boundary. Show that
there are at least 2t/4 different patterns for a path to enter and leave R using these endpoints.
This holds even if we require the path not to self intersect. Here, a pattern is a matching of
the t checkpoints, such that if pi is matched to p j, where the path enters the rectangle R at
pi and leaves through p j (or vice versa).

This implies that if t is large (say Ω(n)) then the running time of the algorithm is
inherently exponential. We first define formally the partition scheme the above approach
implies, and then we show an algorithm for the case where this partition is “good”.

In the following, we will treat rectangles as being half-opened; that is, an axis-parallel
rectangle will be a region of the form [x1, x2)×[y1, y2). We next define a bounding rectangle
for the entire point set, such that there no points are on its boundary.

Definition 12.2. For a point set P in the plane, its frame is the rectangle [x1 − 1, x2 +

1) × [y1 − 1, y2 + 1), where [x1, x2] × [y1, y2] is the smallest axis parallel closed rectangle
containing P.

Definition 12.3. Let P be a set of n points in the plane, and let R be its frame. An RBSP
(rectilinear binary space partition) is a recursive partition of R into rectangles, such that

each resulting rectangle contains a single point of P. Formally, an axis parallel rectangle
containing a single point is a valid RBSP. As such, an RBSP of R and the point set P,
is specified by a splitting line ` (which is either horizontal or vertical) that passes through
some point of P, and RBSPs of both R+ = `+ ∩ R and R− = `− ∩ R, where `− and `+ are
the two halfplanes defined by `.¬ Here we required that R+ ∩ P , ∅ and R− ∩ P , ∅.

A rectangle considered during this recursive construction for a given RBSP is a sub-
rectangle of this RBSP.

Since we always take cutting lines that pass through the given points, there are 2n +

4 lines that can be used by a subrectangle (the vertical and horizontal lines through the
points, and the 4 lines defining the frame of P). Which implies that there are at most O(n4)
subrectangles that can participate in an RBSP of the given point set.

Definition 12.4. Let P be a set of n points in the plane, and let π be a tour of P. The tour π
is t-friendly, for a parameter t > 0, if there exists an RBSP R of the bounding rectangle of
P (for the point set P), such that π crosses the boundary of every subrectangle of R at most
t times.

Theorem 12.5. Given a point set P and a parameter t > 0, then one can compute the
shortest t-friendly tour of P in nO(t) time.

Proof. The algorithm is recursive, and we will use memoization to turn it into a dy-
namic programming algorithm. Let L be the set of 2n + 4 vertical and horizontal lines
passing through the points of P and the four lines used by the frame of P. Let F be the set
of all O(n4) rectangles defined by the grid induced by the lines of L.

An instance of the recursive call is defined by (R,U,M), where R is a rectangle of F,
U is a set of at most t checkpoints placed on the boundary of R, and M is a permutation of
U (this is the order in which the tour visits the checkpoints). As such, there are at most

O
(
n4 · n2t · t!

)
= nO(t)

¬Formally, one of them is open, the other is closed, such that R+ and R− are rectangles, and they are defined
in a consistent way with the frames above.

12.2. WHEN THE OPTIMAL SOLUTION IS FRIENDLY 173

R

`

π

=⇒

`

R+ R−

Figure 3. The top level split of the RBSP of the optimal solution.

different recursive calls. Indeed, there are O(n4) possible subrectangles. For a given sub-
rectangle, a checkpoint is the intersection of a segment defined by two input points and
the boundary of the rectangle. Since the boundary of the rectangle might intersect such a
segment twice, the number of possible checkpoints for a specified rectangle is 2

(
n
2

)
. Now,

if a given subrectangle has i checkpoints, then there are
(
2
(

n
2

))i
possible sets of checkpoints

that it could have, and i! orderings for each set of checkpoints. Since a tour visiting the
rectangle can use up to t checkpoints, a subrectangle has at most

∑t
i=2

(
2
(

n
2

))i
i! ≤ 2n2t · t!

different instances of the subproblems defined for it.
The recursive call (R,U,M) computes the best possible solution to this instance by

trying all possibilities to split it. As a base case, if |P ∩ R| ≤ t, then we solve this instance
using brute force. This takes tO(t) time, by just trying all possible tours restricted to the
points inside R and the checkpoints. For each such solution, we can easily verify that it
complies with the given constraints.

Otherwise, we try all ways to split it by a line ` ∈ L. We require that `+ ∩ P , ∅ and
`− ∩ P , ∅, where `+ and `− are the two halfplanes induced by `. For such a line, we
compute the two subrectangles R+ = R ∩ `+ and R− = R ∩ `−, and the splitting segment
s = R ∩ `. Next, we enumerate all possibilities of the at most t checkpoints on s. For each
such set U′ of checkpoints, we enumerate all possible subproblems defined for R+ and R−

using the checkpoints of U ∪ U′.
For any two such subproblems for R+ and R− we verify that they are consistent with

the given larger instance for R. In particular, the given instance R has a given permutation
on it checkpoints, and the two permutations for the subinstances R+ and R− need to be
consistent with this permutation, and need to be to be consistent on the shared checkpoints
along the splitting line. Note, that each one of these permutations has at most t checkpoints
in it, and as such the check can be easily done in time tO(t). If so, we recursively compute
the shortest solution for these two subproblems. We combine the two recursive solutions
into a solution for the given problem for R; that is, we add up the price of these two
solutions.

We try all such possible solutions, and we store the cheapest solution found as the
solution to this subproblem.

The work associated with each such subproblem is nO(t) (ignoring the work in the
recursive calls). Indeed, we generate all possible cuts (i.e., n), and enumerate all possible
subsets, up to size t, of checkpoints on the cutting line (i.e., nO(t)). Then, we try all possible
permutations on the two subproblems, and verify that they are consistent which the parent

174 12. APPROXIMATING THE EUCLIDEAN TRAVELING SALESMAN PROBLEM (TSP)

permutation and between the two subproblems (this takes tO(t) time). Finally, if found
such a consistent instance for the two subproblems, we recursively compute their optimal
solution.

This implies that the total running time is nO(t), since the number of different subprob-
lems is nO(t).

The initial call, uses the frame of P, and has no checkpoints (note that this is the only
feasible instance in all the recursive calls without checkpoints).

The consistency check throughout the recursive execution of the algorithm guarantee
that the solution returned by the algorithm is indeed a tour of the given input points. Now,
let π denote the shortest t-friendly tour of P. Consider an RBSP that π is t-friendly for.
Clearly, the algorithm would consider during the recursive call this RBSP and would con-
sider π as one possible solution to the given instance. Indeed, this specific RBSP defines
a recursion tree over subproblems. For each such subproblem, we know exactly how the
optimal solution behaves in these subproblems and uses their checkpoints, see Figure 3 for
an example. As such, the algorithm would return the portions of π for each subproblems
of this RBSP, which glued together yields π.

To this end, one can use simple induction to argue that inside each such subproblem
the algorithm computed the optimal solution (complying with the exact constraints on the
checkpoints, and how they should be visited as induced by the optimal solution). As such,
the solution returned by the algorithm is at least as good as the optimal solution (there
might be several equivalent optimal solutions). Namely, it would return π is the computed
solution (assuming, of course, that the optimal solution in this case is unique). �

It is not too hard to verify that any point set has a tour that is 2-friendly (if we do
not require that vertical and horizontal cuts alternate). Intuitively, as t increases the length
of the shortest t-friendly tour decreases. Assume, that we could show that the shortest t-
friendly tour is of length ≤ (1 + 1/t)

∥∥∥πopt
∥∥∥, where πopt is the shortest TSP tour of the given

point set, and
∥∥∥πopt

∥∥∥ is its length. Then, the above algorithm would provide us with a (1+ε)
approximation algorithm, with running time nO(1/ε), by setting t = 1/ε.

Surprisingly, showing that such a t-friendly tour exists is not trivial, and will be the un-
dertaking of the next sections. In fact, we will use similar concepts that use the underlying
idea of limited interaction between subproblems to achieve a PTAS for the approximation
problem.

12.3. TSP Approximation via portals and sliding quadtrees

12.3.1. Portals and sliding – idea and intuition. The basic idea is to do a direct
divide and conquer by imposing a grid on the point set. We will compute the optimal solu-
tion inside each grid cell, and then stitch the solutions together into a global solution. As
such, the basic subproblem we will look at is a square. To reduce the interaction between
subproblems, we will place m equally spaced points on each boundary of a square, and
require the solution under consideration to use these portals. Naturally, we will have to
snap the solution to these portals.

For efficient implementation, the stitching has to be done in a controlled fashion that
involves only a constant number of subsquares being “stitched” together. The most natural
way to achieve this is by using a hierarchical grid; that is, a quadtree.

It might be that the boundary of a large square of the grid intersects the optimal solu-
tion many times. As such, the snapping to portals might introduce a huge error. To avoid

12.3. TSP APPROXIMATION VIA PORTALS AND SLIDING QUADTREES 175

this, we will randomly translate the quadtree/grid. This will distribute the snapping error
in a more uniform way in the quadtree. The exact details of this are described below.

The picture on the right depicts a square and a solu-
tion for it using its portals, and how this solution prop-
agates to the four subsquares. (The yellow region is of
zero width and is enlarged for the sake of clarity.)

12.3.2. The algorithm.
12.3.2.1. Normalizing the point set. The first stage

is to snap the points to a grid, such that the resulting
point set has a bounded polynomial spread. This would
guarantee that the quadtree for the point set would have
logarithmic depth. Naturally, this would introduce some
error and has to be done carefully so that the error is
sufficiently small.

So, let P be a set of n points in the plane for which we would like to compute the TSP
tour, and 1 > ε > 1/n a prespecified constant. Assume, that P is contained in the square[
1/2, 1

]2
and diam(P) ≥ 1/4. This can be guaranteed by scaling and translation, and clearly

given a solution to this instance we can map it to the original point set.
Note, that the optimal solution πopt has to be of length at least diam(P) ≥ 1/4, and at

most n
√

2/2, as the TSP is made out of n segments, none of which can be longer than the

diameter of the square
[
1/2, 1

]2
. Let E = d32/εe. Consider the grid

G =

{
1

nE
(i, j)

∣∣∣∣ i, j are integers
}

and snap each point of P to its closest point on this grid (if several points gets snapped to
the same grid point, we treat the snapped points as a single point). Clearly, every point
of P is moved by at most a distance of z =

√
2/nE. As such, solving the problem for the

snapped point set can be translated back to the original point set. Indeed, by taking this
tour and for each snapped point walking out to the its true location and back, we get a
tour of the original points which is not much longer. Specifically, this introduces an error
of length at most 2z per point (as each point needs to move from its true location to its
snapped location and back), and overall an error of

(12.1) n · 2z = 2n

√
2

nE
≤ 4ε

32
≤ ε

2

∥∥∥πopt
∥∥∥ ,

since
∥∥∥πopt

∥∥∥ ≥ 1/4. Let Q denote the resulting point set.
12.3.2.2. The Dynamic Programming over the quadtree. We randomly select a point

(x, y) ∈ [0, 1/2]2. Consider the translated canonical grid

(12.2) Gi = (x, y) + G2−i ,

for i = 0, 1, 2, . . .; that is, Gi is a grid with side length 2−i with its “origin” at (x, y).
Construct (a regular) quadtree T over Q using the square � = [x, 1+ x]× [y, 1+y] ∈ G0

as the root (note, that Q is contained inside �). Since the diameter of Q is larger than 1/4,
and the minimal distance between a pair of points of Q is at least 1/nE, the height of the
quadtree is going to be at most

H ≤ 1 +
⌈
log2 nE

⌉ ≤ 6 +
⌈
log2(n/ε)

⌉
= O

(
log n

)
.

176 12. APPROXIMATING THE EUCLIDEAN TRAVELING SALESMAN PROBLEM (TSP)

Along each edge of a quadtree node, we will place

m = O(H/ε) = O
(

log n
ε

)
equally spaced points, such that the path entering/exiting the square must use one of these
portals (we will also add in the four corners of the square). Every portal can be used at
most twice. Indeed, if a portal is being used more than twice by a tour, it can be modified
to use it at most twice (see Remark 12.7 below for a proof of this). Furthermore, the path
can use at most

k = O(1/ε)
such portals on each side of the square.

This (uncompressed) quadtree has O(nH) = O(n log n) nodes. For each such square a
subproblem is specified by how the tour interact with the portals. We consider its four chil-
dren, generate all the possible ways the tour might interact with the four children, verify
that information is consistent across the subproblems and with the parent constraints, and
we recursively solve these subproblems. For each such consistent collection of four sub-
problems, we add up the costs of the solutions of the subproblems and set it as a candidate
price to the parent instance. We try all possible such solutions, and return the cheapest one.

One minor technicality is that the portals of the children are not necessarily compatible
with the parent portals, even if they lie on the same edge. As such, the recursive program
adds to the cost of the subproblem the price of the tour moving from the parent portals to
the children portals.

Naturally, if a square in the quadtree has only O(1/ε) points of Q points stored in it,
then given a subproblem for this square, the algorithm would solve the problem directly
by brute force enumeration. Of course, only solutions that visit all the points in the square
would be considered.

Thus, by using memoization, this recursive algorithm becomes a dynamic program-
ming algorithm. The resulting dynamic programming algorithm is similar to the one we
saw for the t-friendly case, with the difference here that the portals are fixed, and the parti-
tion scheme we use is determined by the quadtree and is as such simpler.

We claim, that the resulting tour of the points of Q is a (1 + ε)-approximation to the
shortest TSP tour of Q. (To get a (1 + ε)-approximation to TSP for the original point
set, we need to use a slightly smaller approximation parameter, say ε/10. For the sake of
simplicity we will ignore this minor technicality.)

12.3.3. Analysis.
12.3.3.1. Running time analysis.

Number of subproblems. Given a square and its portals, a tour needs to list the
portals it uses in the order it uses them. The square has 4m + 4 portals on its boundary, and
each portal can be used at most twice. To count this in naive fashion, we duplicate every
portal twice, and select i ≤ 8k of them to be used. We then select one of the i! different
orderings these portals might be visited by the tour. Overall, the total number of different
ways such a tour might interact with a square is bounded by

T =

8k∑
i=0

(
2(4m + 4)

i

)
i! ≤ 8k

(
2(4m + 4)

8k

)
(8k)! ≤

(
(4m + 4)e

8k

)8k

=
(
log n

)O(1/ε) ,

since
(

N
i

)
≤ (Ne/i)i (see Lemma 12.16p183).

12.3. TSP APPROXIMATION VIA PORTALS AND SLIDING QUADTREES 177

Overall running time. It easy to verify that each subproblem can be solved recur-
sively in T O(1) time, ignoring the time it takes the solve the recursive subproblems. Since
the quadtree has O(n log n) nodes, we conclude that the algorithm has overall running time

n logO(1/ε) n.

12.3.3.2. Quality of approximation. We need to argue that the optimal solution for Q
can be made to comply with the constraints above. Namely, subproblems can connect to
one another only by using the portals, such that no more than k portals are used on each
side of a subsquare, out of the 4m + 4 portals allocated to each subsquare.

We will first argue that restricting the optimal TSP to cross each side of a square at
most k times introduces a small error. This will be done by arguing that one can patch a
path so that it crosses every such square edge only a few times. We will argue that this
increases the cost of the tour only mildly. Next, we will argue that moving the paths to use
the portals incurs only a low cost.

s
γ

Fit the first – the patching lemma. In the following, we con-
sider a segment as having two sides. Consider a curve π traveling
along a segment s, such that it enters s on one side and leaves s on
the same side. Conceptually, the reader might want to think of s as
being a very thin rectangle. We will not consider this to be a cross-
ing of s by π, see figure on the right for an example of a curve that
crosses s once. Formally, a subcurve γ crosses a segment s, if γ \ s
is made out of two non-empty connected components, and these two
connected components lie on different sides of the line supporting s
(of course π might go from one side of s to the other side of s by bypassing it all together).
The number of times a curve crosses a segment s is the maximum number of subcurves it
can be broken into, such that each one of these subcurves crosses s.

Lemma 12.6. Let π be a closed curve crossing a segment s at least three times. One can
replace it by a new curve π′ that is identical to π outside s, that crosses s at most twice,
and its total length is at most ‖π‖ + 4 ‖s‖.

Proof. Conceptually, think about s as being a vertical thin rectangle. Let p1, . . . , pk

(resp. q1, . . . , qk) be the k intersection points of π with the left (resp. right) side of s. We
build an Eulerian graph having V = {p1, . . . , pk, q1, . . . , qk} as the vertices. Let si = pipi+1
and s′i = qiqi+1, for i = 1, . . . , k − 1.

Let Eπ be the edges formed by taking each connected component of π \ s as an edge.
Consider the multi-set of edges

E =
{
s1, . . . sk−1, s′1, . . . s

′
k−1

}⋃
{s1, s3, . . .}

⋃{
s′1, s

′
3, . . .

}⋃
{p1q1} ∪ Eπ,

and the connected graph they form G = (V, E). If k is odd then all the vertices in the graph
have even degree. As such, it has an Eulerian tour, that crosses s exactly once using the
zero length bridge p1q1, and is identical to π outside s, and as such it’s the required path.
(Naturally, this implies that the modified tour crosses s and goes around s to form a closed
tour.)

Otherwise, if k is even, then pk and qk are the only odd degree vertices in G. We
modify G by adding pkqk as an edge (which has zero length). Clearly, the resulting graph

Naturally, the reader might not want to think about this segment at all. Be as it may, this myParagraph
deals with this segment and not with the reader wishes. Hopefully the reader would not become bitter over this
injustice.

178 12. APPROXIMATING THE EUCLIDEAN TRAVELING SALESMAN PROBLEM (TSP)

is now Eulerian, and the same argument goes through. (In this case, however, there are
exactly two crossings of s.)

The total length of the edges of this graph (and as such of the resulting curve) is at
most

‖π‖ + 2
(
total length of odd segments along s

)
+ 2 ‖s‖ ≤ ‖π‖ + 4 ‖s‖ ,

as required. �

By being more careful in the patching, the resulting path can be made to be of length
at most ‖π‖ + 3 ‖s‖, see Exercise 12.1.

Remark 12.7. Applying Lemma 12.6 to a segment of length zero, we conclude that an
optimal solution needs to use a portal at most twice.

Second fiddle – properties of sliding grids. Consider a segment s of length r, and
a grid Gi. We claim that the expected number of intersections of s with Gi, for i ≥ 1, is
roughly ‖s‖ /2−i, where 2−i is the sidelength of a cell of the grid Gi. Intuitively, this implies
that the number of times a grid intersects a segment is a good estimator of its length (up to
the right scaling). More importantly, it implies that if a segment is very short, and the grid
is large (i.e., ‖s‖ � 2−i), then the probability of a segment to intersect the grid is small, and
is proportional to its length. We first prove this in one dimension.

Lemma 12.8. Let s be an interval on the x-axis, and let x be a random number picked in

range [0, 1/2]. For i ≥ 1, consider the periodic point set T [x] =

{
x + j/2i

∣∣∣∣ j is an integer
}
.

(The set T [z] can be interpreted as the set of intersections of Gi, centered at z in the x co-
ordinate, with the x-axis.)

If ‖s‖ ≤ 2−i then the probability of s to contain a point of T [x] is
‖s‖

sidelength(Gi)
=

2i ‖s‖.
Furthermore, the expected number of intersections of s with T [x] (i.e., |s ∩ T [x]|) is

exactly 2i ‖s‖, even if ‖s‖ ≥ 2−i.

Proof. Assume that ‖s‖ ≤ 2−i and consider the set

U =

{
x

∣∣∣∣ T [x] ∩ s , ∅
}
.

Observe that U is a periodic set. Indeed, if y = x + j/2i ∈ U = T [x] ∩ s then y =

(x+1/2i)+(j−1)/2i ∈ T [x+1/2i]∩s. Thus x+1/2i is also in U. As such, U =
⋃

j∈ZZ(s+ j/2i).
Since U is periodic (with period 1/2i), the required probability is

Pr
[
T [x] ∩ s , ∅

]
=
‖U ∩ [0, 1/2]‖
‖[0, 1/2]‖ =

∥∥∥U ∩ [0, 1/2i]
∥∥∥∥∥∥[0, 1/2i]

∥∥∥ =
‖s‖
1/2i = 2i ‖s‖ .

As for the second claim, break s into m sub-segments s1, . . . , sm, such that each one of
them is of length at most 2−i−1. Note, that each s j can contain at most one point of T [x],
and let X j be an indicator variable that is one if this happens, for j = 1, . . . ,m. Clearly, the
number of points of T [x] in s is exactly X1 + X2 + · · · + Xm. By linearity of expectations,
we have that

E
[
|T [x] ∩ s|

]
= E

 m∑
j=1

X j

 =

m∑
j=1

E
[
X j

]
=

m∑
j=1

Pr
[
T [x] ∩ s j , ∅

]
=

m∑
j=1

2i
∥∥∥s j

∥∥∥ = 2i ‖s‖ .
�

12.3. TSP APPROXIMATION VIA PORTALS AND SLIDING QUADTREES 179

Lemma 12.9. Let s be a segment in the plane. For i ≥ 1, the probability that s inter-
sects the edges of the grid Gi is bounded by

√
2 ‖s‖. Furthermore, the expected total

number of intersections of s with the vertical and horizontal lines of Gi is in the range[
2i ‖s‖ , √2 · 2i ‖s‖

]
.

Proof. Let Ix and Iy be the projections of s into the x and y axises, respectively. By
Lemma 12.8, the probability that a vertical (resp. horizontal) line of Gi intersects Ix (resp.
Iy) is bounded by 2i ‖Ix‖. By Lemma 12.17p183, we have that ‖Ix‖ +

∥∥∥Iy

∥∥∥ ≤ √2 ‖s‖ and

Pr
[
s intersects an edge of Gi

]
≤ 2i ‖Ix‖ + 2i

∥∥∥Iy

∥∥∥ ≤ √2 · 2i ‖s‖ .
As for the second claim, the expected number of intersections of s with the horizontal

(resp. vertical) lines of Gi is, by Lemma 12.8, exactly 2i
∥∥∥Iy

∥∥∥ (resp. 2i ‖Ix‖). As such, the
expected number of intersections of s with the grid lines is exactly 2i

∥∥∥Iy

∥∥∥ + 2i ‖Ix‖ (note,
that s passes through a vertex of the shifted grid is zero). Now, ‖s‖ ≤

∥∥∥Iy

∥∥∥+ ‖Ix‖ ≤
√

2 ‖s‖,
which implies the claim. �

Remark 12.10. Note that the bounds of Lemma 12.9 hold even if s is a polygonal curve
by breaking it into segments and using linearity of expectation.

We also need the following easy observation.

Claim 12.11. Let Ei be the union of the open edges of Gi (i.e., it does not include the

vertices of Gi). Then, for a point p in the plane, we have that Pr
[
p ∈ Ei−1

∣∣∣∣ p ∈ Ei

]
= 1/2.

Intuitively, every line of Ei has probability
half to survive and be a line of Ei−1. The formal
argument requires a bit more care.

Proof. Assume that p lies on a vertical line of
Gi, as the other possibility follows by similar argu-
mentation. Consider the points of Gi in the square
[0, 1/2)2. There are

(
(1/2)/2−i

)2
= 22(i−1) > 2 such

points. Each of these points has the same proba-
bility to be the shift (x, y) used in generating Gi,
see Eq. (12.2). For exactly half of these points, if
they had been chosen to be the shift then p would
be on an edge of Gi−1, see figure on the right. �

p

(0, 0)

(1/2, 1/2)

The third wheel – the cost of reducing the number of intersections. We patch the
path® starting in the lowest canonical grid GH (i.e., the bottom of the quadtree), then fix
the resulting path in GH−1 (i.e., the next level of the quadtree) and so on, till we reach the
canonical grid G0. Let πi denote the resulting path after handling the grid Gi. As such,
πH+1 is just the original optimal TSP πopt, and π1 is the resulting patched tour (note that
G0 does not intersect the generated path).

The patching is done as follows. In the ith step, for i = 1, . . . ,H, we start with πH+2−i

and consider the grid GH+1−i. If an edge of the grid intersects πH+2−i more than k times,
then we patch it, using Lemma 12.6. We repeat this process over all the edges of the grid,
and the resulting tour is GH−i. Here k is a parameter of this patching process.

®Say it quickly a 100 times.

180 12. APPROXIMATING THE EUCLIDEAN TRAVELING SALESMAN PROBLEM (TSP)

Since we are doing the patching process bottom up, every edge of the grid GH+1−i

corresponds to two edges of GH+2−i. Each of these two edges intersects the tour at most
k times, but together they might intersect this merged edge more than k times, requiring a
patch.

A minor technicality is that we assume that πopt does not pass through any vertex of
the grid GH . Note, that since we randomly shifted the quadtree, the probability that any
grid vertex of GH would lie on πopt is zero.

Intuitively, this patching process introduces only low error because when we fix and
edge of a grid so that the tour does not intersect it too many times, the number of times
the patched tour crosses boundaries of higher level nodes of the quadtree also goes down.
Thus, fix-ups in low levels of the quadtree help us also in higher levels. Similarly, the
total number of crossings (of the tour with the grids) drop exponentially as we use larger
and larger grids, thus requiring less fix-ups. Thus, intuitively, one can think about all the
patching happening in the bottom level of the quadtree. The formal argument, below, is
slightly more involved and one has to be careful, because we are dealing with expectations.

Claim 12.12. Let πopt be the optimal TSP of Q. There exists a tour π1 that is a TSP of Q
that crosses every side of a square of the quadtree T at most k times, and the total length
of π1, in expectation, is ≤ (1 + 8/(k − 2))

∥∥∥πopt
∥∥∥.

Proof. The algorithm to compute this modified path is outlined above. We need to
analyze how much error this patching process introduced.

Let Yi denote the number of times the path πi+1 crosses the edges of the canonical
grid Gi. When the path πi+1 crosses an edge of this grid more than k times, we apply the
patching operation (i.e., Lemma 12.6), so that it crosses this edge at most twice. Let Fi be
the number of patching operations performed at this level, in generating the path πi from
πi+1.

Note, that after all the fix-ups are applied to πi+1 in the grid Gi, it has at most

ni ≤ Yi − (k − 2)Fi

crossings with the edges of the grid Gi, for i ≥ 1. Indeed, every patching of an edge
removes at least k crossings and replaces it with at most two crossings. As such, since the
probability of a grid line of Gi to be a grid line of Gi−1 is exactly 1/2, by Claim 12.11, we
have that

E[Yi−1] = E
[
E
[
Yi−1

∣∣∣∣ ni

]]
= E

[ni

2

]
≤ E

[
Yi − (k − 2)Fi

2

]
=

1
2

E[Yi] − k − 2
2

E[Fi]

=⇒ E[Fi] ≤ 1
k − 2

(E[Yi] − 2 E[Yi−1]) .

The price of each fix-up in the grid Gi is 4/2i, by Lemma 12.6. As such, the expected total
cost of this patching operation is

E[error] = E

 H∑
i=1

4Fi

2i

 ≤ E

2F1 +

H∑
i=2

4Fi

2i

 = E[2F1] +
4

k − 2

H∑
i=2

(E[Yi] − 2 E[Yi−1])
2i

≤ E
[
2

Y1

k − 2

]
+

4
k − 2

(
E[YH]

2H − E[Y1]
2

)
=

4
k − 2

(
E[Y1]

2
+

E[YH]
2H − E[Y1]

2

)
=

4
k − 2

· E[YH]
2H .

12.3. TSP APPROXIMATION VIA PORTALS AND SLIDING QUADTREES 181

since F1 ≤ Y1/k ≤ Y1/(k − 2). The number YH is the number of times πopt crosses the
edges of the bottom grid GH . By Remark 12.10 and Lemma 12.9 we have that E[YH] ≤
2 · 2H

∥∥∥πopt
∥∥∥. As such, we have that

E[error] ≤ 4
k − 2

· E[YH]
2H =

4
k − 2

2 · 2H
∥∥∥πopt

∥∥∥
2H =

8
k − 2

∥∥∥πopt
∥∥∥ .

�

The fourth wall – bounding the price of snapping the tour to the portals. We
finally need to bound the price of snapping the tour to the portals. We remind the reader
that every edge e of a square of the quadtree has m + 2 (two of them are on the endpoints of
the edge) equally spaced portals on it. As such, the distance between an intersection of the
tour (with the edge) and its closest portal (on the edge) is at most ‖e‖ /2(m + 1). As such,
a single snapping operation on e introduces an error of twice the snapping distance by the
triangle inequality; that is 2(‖e‖ /2(m + 1)) = ‖e‖ /(m + 1).

Note, that if an edge of a grid has portals from several levels, the snapped tour uses
only the portals on this edge that belong to the highest level.

Lemma 12.13. The error introduced by snapping π1 so that it uses only portals in all
levels of the quadtree is bounded, in expectation, by 2H

m+1

∥∥∥πopt
∥∥∥.

Proof. Let Zi be the number of crossings of πopt with Gi, for i ≥ 1. Clearly, the tour
π1 has less crossings (because of the patching operations) with Gi than πopt. Thus, we have
that the expected price of snapping π1 to the portals of the quadtree (summed over all the
levels) is bounded by

H∑
i=1

Zi · 1/2i

m + 1
.

As such, in expectation this error is bounded by

E[error2] ≤ E

 H∑
i=1

Zi

2i(m + 1)

 . ≤ H∑
i=1

E
[

Zi

2i(m + 1)

]
=

H∑
i=1

E[Zi]
2i(m + 1)

≤
H∑

i=1

2 · 2i
∥∥∥πopt

∥∥∥
2i(m + 1)

=
2H

m + 1

∥∥∥πopt
∥∥∥

by Remark 12.10 and Lemma 12.9. �

The fifth elephant – putting things together. Normalizing the point set might cause
the optimal solution to deteriorate by a factor of 1 + ε/2, see Eq. (12.1). Forcing the tour
to cross every edge of the quadtree at most k times, increases its length by a factor of
1 + 8/(k − 2), see Claim 12.12. Finally, forcing this tour to use the appropriate portals for
every level, increases its length by a factor of 1 + 2H/(m + 1), see Lemma 12.13. Putting
everything together, the expected length of the optimal solution when forced to be in the
form considered by the dynamic programming is at most(

1 +
ε

2

) (
1 +

8
k − 2

) (
1 +

2H
m + 1

) ∥∥∥πopt
∥∥∥ ≤ (

1 +
ε

2

) (
1 +

ε

10

)2 ∥∥∥πopt
∥∥∥ ≤ (1 + ε)

∥∥∥πopt
∥∥∥ ,

by selecting k = 90/ε = O(1/ε) and m ≥ 20H/ε = Θ((log n)/ε). As such, we proved the
following theorem.

Theorem 12.14. Let P be a set of n points in the plane. One can compute, in n logO(1/ε) n
time, a path π that visits all the points of P, and whose total length (in expectation) is
(1 + ε)

∥∥∥πopt
∥∥∥, where πopt is the shortest TSP visiting all the points of P.

182 12. APPROXIMATING THE EUCLIDEAN TRAVELING SALESMAN PROBLEM (TSP)

12.4. Bibliographical notes

A beautiful historical survey of the TSP problem is provided in the first chapter of the
book by Applegate et al. [ABCC07]. This chapter is available online for free, and I highly
recommend to the interested reader to bless it with her attention (i.e., read it).

The approximation algorithm of Section 12.3 is due to Arora [Aro98]. An alternative
technique by Mitchell [Mit99] is described in the next chapter. Arora’s technique had a
big impact and a lot of follow-up work came out of it, from faster algorithms [RS98], to
k-median clustering algorithms [ARR98, KR99].

A nice presentation of the Arora technique and some of the algorithms using it is
provided by a survey of Arora [Aro03]. Our presentation follows to some extent his pre-
sentation. However, we argued directly on the shifted quadtree, while Arora uses instead a
clever argument about lines in the grid the expect error that each one of them introduces.
In particular, our direct proof of Claim 12.12 seems to be new, and we believe it might be
marginally simpler and more intuitive than the analysis of Arora.

On the number of tours in a subproblem. Concerning the number of different
subproblems one has to consider for a given rectangle and t checkpoints (i.e., Proposi-
tion 12.1). This is equal to the number of matchings of t points in strictly convex position,
which is related to the Catalan number. It is known that the number of non-crossing match-
ings of n points (not necessarily in convex position) in the plane is 2Θ(n), see [SW06].

But is it practical? The clear answer seems to be a resounding no. Finding a PTAS
to a problem will usually leaves us with a impractical algorithm. It does however implies
that a PTAS exists. At this point, one should start hunting for a more practical approach
that might work better in practice.

Much research went into solving TSP in practice. Algorithms that work well in
practice seems to be based on integer programming coupled with various heuristics. See
[ABCC07] for more details.

12.5. Exercises

Exercise 12.1. (Better shortcutting.)
Prove a slightly stronger version of Lemma 12.6. Specifically, given a closed curve π

crossing a segment s at least three times, prove that one can replace it by a new curve π′

that is identical to π outside s that crosses s at most twice, and its total length is at most
‖π‖ + 3 ‖s‖.
Exercise 12.2. (TSP with neighborhoods.)

Given a set of n unit disks F, we are interested in the problem of computing the
minimum length TSP that visits all the disks. Here, the tour has to intersect each disk
somewhere.
(A) Let P be the set of centers of the disks of F. Show how to get a constant factor

approximation for the case that diam(P) ≤ 1.
(B) Extend the above algorithm to the general case.

12.6. From previous lectures

Lemma 12.15. For n ≥ 2δ and δ ≥ 1, we have
(n
δ

)δ
≤ Gδ(n) ≤ 2

(ne
δ

)δ
, where Gδ(n) =

δ∑
i=0

(
n
i

)
.

BIBLIOGRAPHY 183

Lemma 12.16. For any positive integer n, the following holds.

(i) (1 + 1/n)n ≤ e. (ii) (1 − 1/n)n−1 ≥ e−1.

(iii) n! ≥ (n/e)n. (iv) For any k ≤ n, we have
(n

k

)k
≤

(
n
k

)
≤
(ne

k

)k
.

Lemma 12.17. For any p ∈ IRd, we have that ‖p‖1 /
√

d ≤ ‖p‖2 ≤ ‖p‖1.

Bibliography
[ABCC07] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Salesman Problem: A

Computational Study. Princeton University Press, 2007.
[Aro98] S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric problems.

J. Assoc. Comput. Mach., 45(5):753–782, Sep 1998.
[Aro03] S. Arora. Approximation schemes for np-hard geometric optimization problems: a survey. Math.

Prog., 97:43–69, 2003.
[ARR98] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for Euclidean k-median and related

problems. In Proc. 30th Annu. ACM Sympos. Theory Comput., pages 106–113, 1998.
[KR99] S. G. Kolliopoulos and S. Rao. A nearly linear-time approximation scheme for the Euclidean κ-

median problem. In Proc. 7th Annu. European Sympos. Algorithms, pages 378–389, 1999.
[Mit99] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-

time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput.,
28:1298–1309, 1999.

[RS98] S. Rao and W. D. Smith. Improved approximation schemes for geometric graphs via “spanners” and
“banyans”. In Proc. 30th Annu. ACM Sympos. Theory Comput., pages 540–550, 1998.

[SW06] Micha Sharir and Emo Welzl. On the number of crossing-free matchings, cycles, and partitions. SIAM
J. Comput., 36(3):695–720, 2006.

http://www.cs.princeton.edu/~arora/
http://www.cs.princeton.edu/~arora/pubs/tsp.ps
http://www.acm.org/jacm/
http://www.cs.princeton.edu/~arora/
http://www.cs.princeton.edu/~arora/
http://www.cas.mcmaster.ca/~stavros/papers/kmedian.ps
http://www.cas.mcmaster.ca/~stavros/papers/kmedian.ps
http://ams.sunysb.edu/~jsbm/jsbm.html
http://ams.sunysb.edu/~jsbm/jsbm.html

	Chapter 12. Approximating the Euclidean Traveling Salesman Problem (TSP)
	12.1. The TSP problem – Introduction
	12.2. When the optimal solution is friendly
	12.3. TSP Approximation via portals and sliding quadtrees
	12.4. Bibliographical notes
	12.5. Exercises
	12.6. From previous lectures
	Bibliography

